The roles of balancing selection and recombination in the evolution of rattlesnake venom

[ad_1]

  • Zancolli, G. & Casewell, N. R. Venom systems as models for studying the origin and regulation of evolutionary novelties. Mol. Biol. Evol. 37, 2777–2790 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arbuckle, K. From molecules to macroevolution: venom as a model system for evolutionary biology across levels of life. Toxicon X 6, 100034 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mackessy, S. P. Handbook of Venoms and Toxins of Reptiles (CRC Press, 2021).

  • Hargreaves, A. D., Swain, M. T., Hegarty, M. J., Logan, D. W. & Mulley, J. F. Restriction and recruitment—gene duplication and the origin and evolution of snake venom toxins. Genome Biol. Evol. 6, 2088–2095 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Casewell, N. R., Huttley, G. A. & Wuster, W. Dynamic evolution of venom proteins in squamate reptiles. Nat. Commun. 3, 1066 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Casewell, N. R., Wuster, W., Vonk, F. J., Harrison, R. A. & Fry, B. G. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol. Evol. 28, 219–229 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Fry, B. G. & Wuster, W. Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol. Biol. Evol. 21, 870–883 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reyes-Velasco, J. et al. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Mol. Biol. Evol. 32, 173–183 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mackessy, S. P. in The Biology of Rattlesnakes (eds Hayes, W. K. et al.) 495–510 (Loma Linda Univ. Press, 2008).

  • Ikeda, N. et al. Unique structural characteristics and evolution of a cluster of venom phospholipase A 2 isozyme genes of Protobothrops flavoviridis snake. Gene 461, 15–25 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dowell, N. L. et al. The deep origin and recent loss of venom toxin genes in rattlesnakes. Curr. Biol. 26, 2434–2445 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schield, D. R. et al. The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. Genome Res. 29, 590–601 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lynch, V. J. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. BMC Evol. Biol. 7, 2 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Casewell, N. R., Wagstaff, S. C., Harrison, R. A., Renjifo, C. & Wüster, W. Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol. Biol. Evol. 28, 2637–2649 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mayr, E. Cause and effect in biology. Science 134, 1501–1506 (1961).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aird, S. D. et al. Population genomic analysis of a pitviper reveals microevolutionary forces underlying venom chemistry. Genome Biol. Evol. 9, 2640–2649 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Margres, M. J. et al. Tipping the scales: the migration–selection balance leans toward selection in snake venoms. Mol. Biol. Evol. 36, 271–282 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rautsaw, R. M. et al. Intraspecific sequence and gene expression variation contribute little to venom diversity in sidewinder rattlesnakes (Crotalus cerastes). Proc. R. Soc. B 286, 20190810 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Holding, M. L., Biardi, J. E. & Gibbs, H. L. Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proc. R. Soc. B 283, 20152841 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Davies, E.-L. & Arbuckle, K. Coevolution of snake venom toxic activities and diet: evidence that ecological generalism favours toxicological diversity. Toxins 11, 711 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smiley-Walters, S. A., Farrell, T. M. & Gibbs, H. L. Evaluating local adaptation of a complex phenotype: reciprocal tests of pigmy rattlesnake venoms on treefrog prey. Oecologia 184, 739–748 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Holding, M. L., Drabeck, D. H., Jansa, S. A. & Gibbs, H. L. Venom resistance as a model for understanding the molecular basis of complex coevolutionary adaptations. Integr. Comp. Biol. 56, 1032–1043 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Poran, N. S., Coss, R. G. & Benjamini, E. L. I. Resistance of California ground squirrels (Spermophilus beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus viridis oreganus): a study of adaptive variation. Toxicon 25, 767–777 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Heatwole, H. & Poran, N. S. Resistances of sympatric and allopatric eels to sea snake venoms. Copeia 1995, 136–147 (1995).

  • Pomento, A. M., Perry, B. W., Denton, R. D., Gibbs, H. L. & Holding, M. L. No safety in the trees: local and species-level adaptation of an arboreal squirrel to the venom of sympatric rattlesnakes. Toxicon 118, 149–155 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Biardi, J. E., Chien, D. C. & Coss, R. G. California ground squirrel (Spermophilus beecheyi) defenses against rattlesnake venom digestive and hemostatic toxins. J. Chem. Ecol. 32, 137–154 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jansa, S. A. & Voss, R. S. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers. PLoS ONE 6, e20997 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Voss, R. S. & Jansa, S. A. Snake‐venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials. Biol. Rev. 87, 822–837 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Drabeck, D. H., Dean, A. M. & Jansa, S. A. Why the honey badger don’t care: convergent evolution of venom-targeted nicotinic acetylcholine receptors in mammals that survive venomous snake bites. Toxicon 99, 68–72 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gibbs, H. L. et al. The molecular basis of venom resistance in a rattlesnake–squirrel predator–prey system. Mol. Ecol. 29, 2871–2888 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kordiš, D., Bdolah, A. & Gubenšek, F. Positive Darwinian selection in Vipera palaestinae phospholipase A2 genes is unexpectedly limited to the third exon. Biochem. Biophys. Res. Commun. 251, 613–619 (1998).

    PubMed 
    Article 

    Google Scholar
     

  • Kordiš, D. & Gubenšek, F. Adaptive evolution of animal toxin multigene families. Gene 261, 43–52 (2000).

    PubMed 
    Article 

    Google Scholar
     

  • Juárez, P., Comas, I., González-Candelas, F. & Calvete, J. J. Evolution of snake venom disintegrins by positive Darwinian selection. Mol. Biol. Evol. 25, 2391–2407 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Strickland, J. L. et al. Evidence for divergent patterns of local selection driving venom variation in Mojave Rattlesnakes (Crotalus scutulatus). Sci. Rep. 8, 17622 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Przeworski, M., Coop, G. & Wall, J. D. The signature of positive selection on standing genetic variation. Evolution 59, 2312–2323 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Cutter, A. D. & Payseur, B. A. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat. Rev. Genet. 14, 262 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aquadro, C. F., Begun, D. J. & Kindahl, E. C. in Non-Neutral Evolution (ed. Golding, B.) 46–56 (Springer, 1994).

  • Begun, D. J. & Aquadro, C. F. Molecular population genetics of the distal portion of the X chromosome in Drosophila: evidence for genetic hitchhiking of the yellow-achaete region. Genetics 129, 1147–1158 (1991).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maynard Smith, J. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23–35 (1974).

    Article 

    Google Scholar
     

  • Barton, N. H. Genetic hitchhiking. Philos. Trans. R. Soc. Lond. B 355, 1553–1562 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2, e64 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fijarczyk, A. & Babik, W. Detecting balancing selection in genomes: limits and prospects. Mol. Ecol. 24, 3529–3545 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Piertney, S. B. & Oliver, M. K. The evolutionary ecology of the major histocompatibility complex. Heredity 96, 7–21 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kelley, J., Walter, L. & Trowsdale, J. Comparative genomics of major histocompatibility complexes. Immunogenetics 56, 683–695 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bakker, E. G., Toomajian, C., Kreitman, M. & Bergelson, J. A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell 18, 1803–1818 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goldberg, E. E. et al. Species selection maintains self-incompatibility. Science 330, 493–495 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Llaurens, V., Whibley, A. & Joron, M. Genetic architecture and balancing selection: the life and death of differentiated variants. Mol. Ecol. 26, 2430–2448 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Thompson, J. N. The Geographic Mosaic of Coevolution (Univ. Chicago Press, 2005).

  • Yoder, J. B. & Nuismer, S. L. When does coevolution promote diversification? Am. Nat. 176, 802–817 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Leffler, E. M. et al. Multiple instances of ancient balancing selection shared between humans and chimpanzees. Science 339, 1578–1582 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • DeGiorgio, M., Lohmueller, K. E. & Nielsen, R. A model-based approach for identifying signatures of ancient balancing selection in genetic data. PLoS Genet. 10, e1004561 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Takahata, N. A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc. Natl Acad. Sci. USA 87, 2419–2423 (1990).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Clark, A. G. Neutral behavior of shared polymorphism. Proc. Natl Acad. Sci. USA 94, 7730–7734 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wiuf, C., Zhao, K., Innan, H. & Nordborg, M. The probability and chromosomal extent of trans-specific polymorphism. Genetics 168, 2363–2372 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Teixeira, J. C. et al. Long-term balancing selection in LAD1 maintains a missense trans-species polymorphism in humans, chimpanzees, and bonobos. Mol. Biol. Evol. 32, 1186–1196 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294 (1966).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barton, N. H. & Charlesworth, B. Why sex and recombination? Science 281, 1986–1990 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Webster, M. T. & Hurst, L. D. Direct and indirect consequences of meiotic recombination: implications for genome evolution. Trends Genet. 28, 101–109 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McGaugh, S. E. et al. Recombination modulates how selection affects linked sites in Drosophila. PLoS Biol. 10, e1001422 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Begun, D. J. & Aquadro, C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 356, 519–520 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schield, D. R. et al. Snake recombination landscapes are directed by PRDM9 but concentrated in functional regions. Mol. Biol. Evol. 37, 1272–1294 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mackessy, S. P. Evolutionary trends in venom composition in the Western Rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers. Toxicon 55, 1463–1474 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Holding, M. L., Sovic, M. G., Colston, T. J. & Gibbs, H. L. The scales of coevolution: comparative phylogeography and genetic demography of a locally adapted venomous predator and its prey. Biol. J. Linn. Soc. 132, 297–317 (2021).

    Article 

    Google Scholar
     

  • Schield, D. R. et al. Allopatric divergence and secondary contact with gene flow: a recurring theme in rattlesnake speciation. Biol. J. Linn. Soc. 128, 149–169 (2019).

    Article 

    Google Scholar
     

  • Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ferrer-Admetlla, A., Liang, M., Korneliussen, T. & Nielsen, R. On detecting incomplete soft or hard selective sweeps using haplotype structure. Mol. Biol. Evol. 31, 1275–1291 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao, Z., Przeworski, M. & Sella, G. Footprints of ancient‐balanced polymorphisms in genetic variation data from closely related species. Evolution 69, 431–446 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Siewert, K. M. & Voight, B. F. Detecting long-term balancing selection using allele frequency correlation. Mol. Biol. Evol. 34, 2996–3005 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Siewert, K. M. & Voight, B. F. BetaScan2: standardized statistics to detect balancing selection utilizing substitution data. Genome Biol. Evol. 12, 3873–3877 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng, X. & DeGiorgio, M. Flexible mixture model approaches that accommodate footprint size variability for robust detection of balancing selection. Mol. Biol. Evol. 37, 3267–3291 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng, X. & DeGiorgio, M. BalLeRMix+: mixture model approaches for robust joint identification of both positive selection and long-term balancing selection. Bioinformatics 38, 861–863 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Navarro, A. & Barton, N. H. The effects of multilocus balancing selection on neutral variability. Genetics 161, 849–863 (2002).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fry, B. G. From genome to ‘venome’: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 15, 403–420 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bernardoni, J. L. et al. Functional variability of snake venom metalloproteinases: adaptive advantages in targeting different prey and implications for human envenomation. PLoS ONE 9, e109651 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Modahl, C. M., Mrinalini, Frietze, S. & Mackessy, S. P. Adaptive evolution of distinct prey-specific toxin genes in rear-fanged snake venom. Proc. R. Soc. B 285, 20181003 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Klauber, L. M. Rattlesnakes: Their Habits, Life Histories, and Influence on Mankind (Univ. California Press, 1956).

  • Holding, M. L. et al. Phylogenetically diverse diets favor more complex venoms in North American pitvipers. Proc. Natl Acad. Sci. USA 118, e2015579118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Axel, B., Pook, C. E., Harrison, R. A. & Wolfgang, W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. R. Soc. B 276, 2443–2449 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Margres, M. J. et al. The Tiger Rattlesnake genome reveals a complex genotype underlying a simple venom phenotype. Proc. Natl Acad. Sci. USA 118, e2014634118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mason, A. J. et al. Trait differentiation and modular toxin expression in palm-pitvipers. BMC Genomics 21, 147 (2020).

  • Clarke, B. C. The evolution of genetic diversity. Proc. R. Soc. B. 205, 453–474 (1979).

    CAS 

    Google Scholar
     

  • Arbuckle, K., de la Vega, R. C. R. & Casewell, N. R. Coevolution takes the sting out of it: evolutionary biology and mechanisms of toxin resistance in animals. Toxicon 140, 118–131 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schield, D. R., Perry, B. W., Nikolakis, Z. L., Mackessy, S. P. & Castoe, T. A. Population genomic analyses confirm male-biased mutation rates in snakes. J. Hered. 112, 221–227 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van der Auwera, G. A. et al. From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 10–11 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Delaneau, O., Howie, B., Cox, A. J., Zagury, J.-F. & Marchini, J. Haplotype estimation using sequencing reads. Am. J. Hum. Genet. 93, 687–696 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dowell, N. L. et al. Extremely divergent haplotypes in two toxin gene complexes encode alternative venom types within rattlesnake species. Curr. Biol. 28, 1016–1026 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xie, C. & Tammi, M. T. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinf. 10, 80 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wigginton, J. E., Cutler, D. J. & Abecasis, G. R. A note on exact tests of Hardy–Weinberg equilibrium. Am. J. Hum. Genet. 76, 887–893 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Green, R. E. et al. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346, 1254449 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Korunes, K. L. & Samuk, K. pixy: unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Mol. Ecol. Resour. 21, 1359–1368 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nei, M. & Roychoudhury, A. K. Sampling variances of heterozygosity and genetic distance. Genetics 76, 379–390 (1974).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gautier, M. & Vitalis, R. rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 28, 1176–1177 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gautier, M., Klassmann, A. & Vitalis, R. rehh 2.0: a reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol. Ecol. Resour. 17, 78–90 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Renaud, G. glactools: a command-line toolset for the management of genotype likelihoods and allele counts. Bioinformatics 34, 1398–1400 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haller, B. C. & Messer, P. W. SLiM 3: forward genetic simulations beyond the Wright–Fisher model. Mol. Biol. Evol. 36, 632–637 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chan, A. H., Jenkins, P. A. & Song, Y. S. Genome-wide fine-scale recombination rate variation in Drosophila melanogaster. PLoS Genet. 8, e1003090 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • [ad_2]

    Leave a Reply

    Your email address will not be published.

    https://www.medmotion.org/profile/19-rekomendasi-slot-gacor/profile

    https://www.autmhq.org/profile/17-daftar-situs-slot-gacor-online-gampang-menang/profile

    https://jazztrend.com/slot-gacor/

    https://www.autmhq.org/profile/20-daftar-slot-online-gacor/profile

    https://192622.peda.univ-lille.fr/community/profile/19-daftar-situs-slot-gacor-gampang-menang/

    https://www.snatamkaur.com/profile/slot-online-terbaru-2022/profile

    https://www.dsdiagnosisnetwork.org/profile/21-rekomendasi-slot-online-resmi/profile

    https://www.medmotion.org/profile/daftar-slot-gacor-hari-ini-2022/profile

    https://www.medmotion.org/profile/21-bocoran-slot-gacor/profile

    https://www.medmotion.org/profile/21-situs-slot-gacor/profile

    https://www.medmotion.org/profile/link-daftar-slot-gacor/profile

    https://www.icon.edu.mx/profile/bocoran-slot-gacor-hari-ini-gampang-menang/profile

    https://www.wangchenttc.com/profile/link-daftar-slot-gacor-resmi-hari-ini/profile

    https://www.medmotion.org/profile/bocoran-10-situs-judi-bola-resmi/profile

    https://www.medmotion.org/profile/21-bocoran-slot-bonus-100-di-depan/profile

    https://www.olivasdegramado.com.br/profile/nama-situs-slot-bonus-new-member-100/profile

    https://www.wangchenttc.com/profile/link-situs-slot-bonus-100-didepan/profile

    https://www.olivasdegramado.com.br/profile/kumpulan-slot-bonus-100-di-depan/profile

    https://www.medmotion.org/profile/20-slot-bonus-new-member/profile

    https://www.yunusmasters.ait.asia/profile/19-rekomendasi-slot-gacor/profile

    https://www.theliverpoolpub.com/profile/19-rekomendasi-slot-gacor/profile

    https://www.palmgreens.co.uk/profile/bocoran-jam-slot-gacor/profile

    https://www.movimientosalud2030.com/profile/bocoran-jam-dan-pola-slot-gacor/profile

    https://www.medmotion.org/profile/bocoran-jam-pola-slot-gacor/profile